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Abstract

Cardiopulmonary coupling (CPC) has been recognized
as an important and low-cost technique for in-home sleep
monitoring. Clinically, sleep staging is a prior for evalua-
tion of sleep state, especially for the sleep disorders, such
as sleep apnea. However, there are few studies on CPC-
based characteristic parameters that could be applied to
sleep staging.

In this study, inspired by the Visibility Graph and com-
plex networks, we realized CPC analysis using ECG-
derived respiration (EDR) technique and mapped the EDR
time series of different sleep stages for 16 sleep apnea pa-
tients into networks and calculated characteristic param-
eters using Weighted Limited Penetrable Visibility Graph
(WLPVG), including the characteristic path length L, the
weighted clustering coefficient entropy Ecω and the weight
distribution entropy Eω . Each characteristic parameter
was evaluated among different sleep stages.

Results showed the significant variation of characteris-
tic parameters during different sleep stages. In particular,
the characteristic path length L out of three parameters
presented high sensitivity for capturing the difference in
different stages.

This study explored the mechanism of the cardiorespira-
tory dynamic system during sleep and supported an inter-
pretable basis for subsequent characterization and differ-
entiation of sleep stages.

1. Introduction

Sleep apnea is recognized as a sleep disorder that the
respiration repeatedly stops and starts during the sleeping
process [1]. As a common type of sleep apnea, obstruc-
tive sleep apnea (OSA) affects up to 38 % of the gen-
eral population [2]. The caused health risk includes sleep
fragmentation, high blood pressure, depression, memory
loss and anxiety, and cardiovascular system instability (in-
creased levels of hypertension, coronary arterial disease,
and arrhythmias) [3]. Although apnea significantly im-

pacts health and sleep quality, the public’s awareness of
this disorder is low. Therefore, the development of sleep
analysis of sleep apnea attracts more researchers’ attention.

Sleep staging is a measure to assess sleep char-
acteristics and determine total sleep time, which is
highly related to evaluating sleep apnea severity. As a
gold standard, Polysomnography (PSG) collects multi-
modal signals, such as electroencephalograms (EEGs),
electromyograms, electrooculograms, electrocardiogram
(ECG), pulse oximetry, airflow, and respiratory effort, and
realizes the sleep analysis in the sleep laboratory. How-
ever, the PSG device is cumbersome, and professionals
should supervise the operation. Therefore, sleep analy-
sis should explore more convenient and cost-effective tech-
niques.

Electrocardiogram (ECG) and respiration are two phys-
iological signals widely used to analyze sleep characteris-
tics in wearable monitoring. As two dynamic and com-
plex systems of the human body, investigation of the dy-
namic behaviors of both systems during sleeping is essen-
tial [4]. Complex network theory has been employed in the
dynamic analysis of complex physiological systems. The
visibility graph (VG) proposed in [5] contributed to the
analysis of EEG signals [6] and human heartbeat dynamics
[7]. [8] applied VG on the cardiorespiratory coupling se-
ries during sleeping. To further increase the calculation
efficiency, the improved method based on the weighted
limited penetrable horizontal visibility graph (WLPHVG)
was proposed in [9]. However, little research has been per-
formed on the feature analysis of cardio-respiratory time
series over the sleeping process.

Therefore, this study aims to employ the WLPHVG-
based method on the cardiorespiratory interaction time
series to build complex networks for analyzing dynamic
characteristics across sleep stages of sleep apnea subjects.

2. Data

MIT-BIH Polysomnographic Database: The MIT-BIH
polysomnographic database [10] collects overnight multi-
ple physiological signals of subjects with sleep apnea in
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the Boston’s Beth Israel Hospital Sleep Laboratory. A to-
tal of 16 subjects participated, and the recording duration
varies from 6 to 8 hours. Each physiological signal is sam-
pled at 250 Hz. Followed by the criteria of RechtschaHen
and Kales, the sleep stages are annotated each 30 s with six
labels (wake, stage 1,2,3,4, rapid eye movement (REM)).
In our study, we combined stages 1 and 2 as the light sleep
stage (LS) and stages 3 and 4 as the deep sleep stage (DS).
The ECG data was broken into 30 s epochs based on the
corresponding sleep stages.

3. Methods

3.1. Preprocessing and R peak detection

First, the raw ECG signal was low-pass filtered at a 35
Hz cutoff frequency to eliminate the high-frequency im-
pacts [11]. Then, the Pan and Tompkins algorithm [12]
was employed to detect R-peak locations.

3.2. ECG-derived respiration

The modulation of respiration on ECG is reflected in
two aspects: morphology and rhythm. During the respira-
tory cycle, the chest movements due to the air filling and
emptying of the lungs lead to the rotation of the heart’s
electrical axis, which causes respiration’s influence on the
ECG morphology. On the other hand, the heart rate in-
creases during the inspiration and decreases during the ex-
piration. The cyclic variation of heart rate shows the respi-
ratory modulation of the rhythm of ECG. In this study, the
ECG-derived respiration (EDR) technique in [13] is em-
ployed to extract respiration from ECG. Figure 1 showed
the example of a 30 s ECG waveform, synchronously col-
lected respiratory waveform and EDR waveform. It is
noted that the EDR waveform is highly similar to the col-
lected respiration both in morphology and rhythm.

3.3. Weighted limited penetrable horizon-
tal visibility graph

The weighted limited penetrable horizontal visibility
graph is proposed in [9], which defined each data point
of the time series as the nodes in the network. The his-
togram is obtained by the amplitude of each point. Ac-
cording to the visibility rule, the two nodes connect if they
can ”see” each other, which means an intermediate node
blocks the visible line between corresponding histograms
of two nodes at a distance no greater than limited pene-
trable visual distance Lp. Compared to visibility graph
(VG) [5] and limited penetrable horizontal visibility graph
(LPHVG) [14], the weight is introduced in WLPHVG. The
weight ωij of the edge between two nodes i and j is defined
as:
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Figure 1. The example of (a) 30 s raw ECG waveform,
(b) the synchronously collected 30 s respiratory waveform
and (c) 30 s EDR waveform.

ωij =

{
1 + |(i− j)(xi − xj)|, i and j are connected

0, i and j are unconnected
(1)

where xi and xj are amplitudes of node i and j, respec-
tively.

The network characteristics are extracted through three
parameters (the characteristic path length L, the weighted
clustering coefficient entropy ECω and the weight distri-
bution entropy Eω to reflect dynamics of complex system.
The detailed definitions of three parameters are described
as follows:
(1) The characteristic path length

L =
1

N(N − 1)

∑
i,j∈V,i ̸=j

dij (2)

where V is the set of nodes, N is the number of nodes,
and dij is the lowest path length between node i and j.

(2) The weighted clustering coefficient entropy

ECω = −
N∑
i=1

PCω,ilog(PCω,i) (3)

where
PCω,i =

Cω,i∑N
i=1 Cω,i

(4)
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Figure 2. The probability distribution of three characteristic parameters L,EcωandEω and corresponding Gaussian fittings.

Cω,i =

∑
j,k ωijωjkωki∑

j,k ωijωki
(5)

(3) The weight distribution entropy
The histogram is constructed to exhibit the weight dis-
tribution of each edge and the number of intervals is
M . The probability distribution of ith weight interval
is Pω,i. Then, the weight distribution entropy could be
written as:

Eω = −
M∑
i=1

Pω,ilog(Pω,i) (6)

4. Results

Figure 2 showed the probability distribution of three pa-
rameters (the characteristic path length L, the weighted
clustering coefficient entropy Ecω and the weight distri-
bution entropy Eω) between wake and light-sleep stages.
To better visualize, we performed the Gaussian fitting on
the distribution of each parameter. Compared with Ecω ,
the obvious difference could be distinguished in the distri-
bution of L and Eω in wake and light sleep stages. For
both L and Eω , the value exhibited a decreased trend from
the wake to the light sleep stage. In other words, the mean
value of Gaussian fitting decreased from around 7 to 5 for
L and 2 to 1 for Eω .

Figure 3 provided the detailed information of parameter
(a) L, (b) Ecω and (c) Eω during whole sleep cycle, which
involved four stages with wake to light sleep to deep sleep
to rapid eye movement. During the transfer of sleep stages,
L showed a continuous decreased trend, especially signif-
icant between the wake stage and light sleep. From figure.
3(b) and 3(c), the Ecω and Eω showed a similar variation
among different sleep stages, which obviously decreased
between wake to light sleep and then increased to deep
sleep and rapid eye movement.
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Figure 3. The values of three characteristic parameters (a)
L, (b) Ecω and (c) Eω for different sleep stages.

5. Discussion and Conclusion

In this study, we investigated the dynamic characteris-
tics of the cardiopulmonary system based on parameters
(the characteristic path length L, the weighted clustering
coefficient entropy Ecω and the weight distribution entropy
Eω) of the weighted limited penetrable visibility graph
during sleeping of sleep-apnea subjects.

The cardiopulmonary system is complex and controlled
by the autonomic nervous system (ANS). The parameters
of the complex system built by the EDR series during sleep
are affected by the modulation of ANS during the sleep
stages [15]. However, the sleep structure is disordered for
those suffering from sleep apnea. Even though some re-
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lated research was proposed, the focus is on cardiorespi-
ratory interaction (CRI) analysis during normal sleep us-
ing complex networks. Few studies reported the dynamic
characteristics of CRI with sleep apnea. [8] analyzed the
CRI time series through the visibility graph method. The
property of assortative mixing of the network during sev-
eral sleep stages was investigated. The result showed the
largest assortativity coefficient at the deep sleep stage and
the lowest at the wake stage, indicating that deep sleep ex-
hibited a more regular CRI pattern. This discovery is con-
sistent with our results in figure.3(b) and 3(c). In the asleep
stage, the entropy-based parameters Ecω and Eω achieved
the maximum value at the deep sleep, which meant the CRI
pattern is more stable than light sleep and rapid eye move-
ment. This result is reasonable since the entropy is higher
in the regular system. When sleep apnea occurs, the dis-
rupted sleep leads to the irregularity of the heart rate and
respiration, which explains the maximal value of Eω at the
wake stage.

In general, the weighted limited penetrable visibility
graph provided a novel method for analyzing the car-
diopulmonary interaction of sleep apnea and an opportu-
nity of understanding the dynamic characteristics of com-
plex networks and physiological mechanisms
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